felliz

China Sourcing Toolkit

Complete Guide for Strategic Procurement and Supplier Management

A comprehensive resource for professionals engaged in sourcing from China, providing systematic frameworks, practical tools and proven methodologies to optimize procurement processes, mitigate risks and maximize value.

Factory Evaluation

Comprehensive checklists for facility assessment and supplier qualification

Cost Analysis

TCO models and hidden cost identification frameworks

Compliance Guides

Regulatory frameworks and quality assurance protocols

Product Development

Stage-gate process and DFM guidelines for China manufacturing

I. FACTORY EVALUATION CHECKLIST

A. Facility Assessment

Manufacturing Capabilities Evaluation

Modern supply chain management requires a systematic approach to evaluating manufacturing capabilities based on operational excellence principles. The evaluation framework should incorporate multiple dimensions of manufacturing performance.

Production Capacity Analysis Matrix:

Evaluation Criteria	Weight	Score (1-5)	Weighted Score
Annual production capacity vs. demand	25%		
Production line flexibility	20%		
Scalability potential	20%		
Utilization rate efficiency	15%		
Lead time management	20%		

Equipment and Technology Assessment:

The resource-based view theory emphasizes that sustainable competitive advantage comes from valuable, rare, inimitable, and non-substitutable resources. Apply this framework when evaluating factory equipment:

- Technology Currency Check: Equipment age and depreciation status, automation level and Industry 4.0 integration, maintenance records and downtime statistics, technology upgrade roadmap and investment plans
- Innovation Capability: R&D facilities and capabilities, new technology adoption rate, digital transformation initiatives, process improvement methodologies implemented

Quality Control Systems Evaluation

Total Quality Management principles require comprehensive assessment of quality systems throughout the manufacturing process.

Quality Management System Scorecard:

QMS Component	Assessment Criteria	Score	Action Required
Quality Policy	Written policy, management commitment	/10	
Process Control	Statistical process control implementation	/10	
Inspection Systems	In-process and final inspection procedures	/10	

QMS Component	Assessment Criteria	Score	Action Required
Corrective Actions	CAPA system effectiveness	/10	
Continuous Improvement	Kaizen and improvement culture	/10	

Certification Compliance Checklist:

- ISO 9001:2015 Quality Management Systems
- ISO 14001:2015 Environmental Management
- OHSAS 18001/ISO 45001 Occupational Health & Safety
- Industry-specific certifications (TS 16949, AS9100, etc.)
- Customer-specific quality requirements

B. Financial Stability Assessment

Transaction cost economics theory suggests that financial stability directly impacts long-term partnership viability and transaction costs.

Financial Health Indicators

Financial Stability Scoring Model:

Financial Metric	Excellent (4-5)	Good (3-4)	Acceptable (2-3)	Poor (1- 2)	Score
Current Ratio	>2.0	1.5-2.0	1.0-1.5	<1.0	
Debt-to- Equity	<0.5	0.5-1.0	1.0-2.0	>2.0	
Revenue Growth (3yr avg)	>15%	10-15%	5-10%	<5%	
Profit Margin	>10%	7-10%	3-7%	<3%	
Working Capital	Strong positive	Positive	Neutral	Negative	

Financial Due Diligence Checklist:

- Audited financial statements (last 3 years)
- Bank references and credit ratings
- Tax compliance certificates
- Insurance coverage verification
- Customer payment history analysis
- Supplier payment terms and history

Business Continuity Assessment

Risk Mitigation Capability Evaluation:

- Business continuity planning documentation
- Disaster recovery procedures
- Supply chain diversification strategies
- Key personnel succession planning
- Insurance coverage adequacy

II. COST CALCULATION TEMPLATES

A. Total Cost of Ownership (TCO) Model

Direct Costs Analysis

The Total Cost of Ownership model, based on value chain analysis theory, provides a comprehensive framework for evaluating all costs associated with sourcing decisions.

Direct Cost Calculation Template:

Cost Component	Unit Cost (USD)	Volume	Total Cost	% of Total
Material Costs				
Raw materials				
Components/Parts				
Packaging materials				
Labor Costs				
Direct labor				

Cost Component	Unit Cost (USD)	Volume	Total Cost	% of Total
Indirect labor				
Supervision				
Manufacturing Overhead				
Factory overhead				
Equipment depreciation				
Utilities				
Total Direct Costs			\$	100%

Cost Structure Analysis Formula:

Unit Cost = (Material Cost + Labor Cost + Overhead Cost +
Profit Margin) / Units Produced

Manufacturing Cost Breakdown

Activity-based costing provides a more accurate way to allocate overhead costs to products based on the activities required to produce them.

Activity-Based Costing Model:

Activity Center	Cost Driver	Rate	Usage	Allocated Cost
Setup	Number of setups	\$		\$
Machine operation	Machine hours	\$		\$
Material handling	Number of moves	\$		\$
Quality inspection	Inspection hours	\$		\$
Packaging	Units packaged	\$		\$

B. Hidden Cost Analysis

Indirect Cost Identification

Transaction cost economics theory identifies various hidden costs that impact total sourcing costs beyond the visible purchase price.

Hidden Cost Assessment Matrix:

Cost Category	Description	Estimation Method	Annual Cost Impact
Communication Costs			
Language barriers	Translation, misunderstandings	% of order value	\$
Time zone differences	Extended project timelines	Hours × Rate	\$
Travel and meetings	Supplier visits, audits	Actual expenses	\$
Quality-Related Costs			
Inspection costs	Additional QC requirements	% of order value	\$
Rework and corrections	Quality issues	% defect rate × cost	\$

Cost Category	Description	Estimation Method	Annual Cost Impact
Warranty claims	Product failures	Historical data	\$
Logistics Costs			
Extended lead times	Inventory carrying cost	Days × carrying rate	\$
Transportation	Shipping, customs, handling	Per unit/kg	\$
Insurance	Cargo and transit insurance	% of goods value	\$

Total Hidden Costs Formula:

```
Total Hidden Costs = \Sigma (Communication + Quality + Logistics + Compliance + Risk Costs)

Hidden Cost Percentage = (Total Hidden Costs / Purchase Price) \times 100%
```

Risk-Adjusted Cost Analysis

Quantifying potential risks helps in creating more accurate cost projections and contingency plans.

Risk Cost Quantification Model:

Risk Factor	Probability (%)	Impact (\$)	Expected Cost	Mitigation Cost
Supply disruption	%	\$	\$	\$
Quality failures	%	\$	\$	\$
Currency fluctuation	%	\$	\$	\$
Regulatory changes	%	\$	\$	\$
IP infringement	%	\$	\$	\$

C. Price Negotiation Framework

Should-Cost Modeling

Should-cost analysis, based on value engineering principles, provides a scientific approach to price negotiation by understanding the fundamental cost drivers.

Should-Cost Build-Up Model:

Cost Element	Analysis Method	Baseline Cost	Target Cost	Savings Opportunity
Materials				
Raw material A	Market price analysis	\$	\$	\$
Raw material B	Supplier benchmarking	\$	\$	\$
Components	Value analysis	\$	\$	\$
Labor				
Direct labor	Time & motion study	\$	\$	\$
Indirect labor	Industry benchmarks	\$	\$	\$
Overhead				

Cost Element	Analysis Method	Baseline Cost	Target Cost	Savings Opportunity
Factory overhead	Capacity utilization	\$	\$	\$
SG&A allocation	Cost structure analysis	\$	\$	\$
Profit Margin				
Reasonable profit	Industry standards	\$	\$	\$

Price Negotiation Preparation Checklist:

- **Market Intelligence:** Competitive pricing benchmarks, raw material price trends, industry cost inflation rates, alternative supplier quotes
- **Cost Analysis:** Should-cost model development, value engineering opportunities, volume discount structures, long-term contract benefits
- **Negotiation Strategy:** Win-win scenarios identification, BATNA (Best Alternative) development, concession planning, performance incentive structures

Strategic Pricing Models

Effective pricing strategies balance volume discounts with profitability targets.

Volume-Based Pricing Structure:

Volume Tier	Units	Unit Price	Total Value	Discount %
Tier 1	1-1,000	\$	\$	0%
Tier 2	1,001-5,000	\$	\$	%
Tier 3	5,001- 10,000	\$	\$	%
Tier 4	10,001+	\$	\$	%

Long-Term Contract Pricing Framework:

```
Year 1 Price = Base Price

Year 2 Price = Year 1 × (1 + Inflation Rate -
Productivity Improvement)

Year 3 Price = Year 2 × (1 + Inflation Rate -
Productivity Improvement)

Where:
- Inflation Rate = Agreed market index (e.g., Producer
Price Index)
- Productivity Improvement = Annual efficiency target
(e.g., 2-5%)
```

III. COMPLIANCE GUIDES

A. Regulatory Compliance Framework

International Standards Compliance

Regulatory compliance theory emphasizes that adherence to international standards reduces transaction costs and market entry barriers while ensuring product acceptance across global markets.

Product Safety Regulations Checklist:

United States

- FDA regulations (food, medical devices, cosmetics)
- CPSC safety standards (consumer products)
- FCC compliance (electronics)
- DOT regulations (transportation)
- EPA environmental standards

European Union

- CE marking requirements
- RoHS directive compliance
- REACH regulation (chemicals)
- Medical Device Regulation (MDR)
- General Product Safety Directive

Other Key Markets

- Health Canada regulations
- Australian Consumer Law (ACL)
- Japanese Industrial Standards (JIS)
- Korean Certification (KC)

Import/Export Compliance

Documentation Requirements Matrix:

Document Type	Purpose	Responsible Party	Timeline
Commercial	Customs	Supplier	Before
Invoice	valuation		shipment
Packing List	Cargo verification	Supplier	Before shipment
Bill of Lading	Transportation	Freight forwarder	At shipment
Certificate of	Trade	Supplier/Authority	Before
Origin	agreements		shipment
Inspection	Quality	Third party	After
Certificate	assurance		production
Insurance	Cargo	Insurance	Before
Certificate	protection	company	shipment

Customs Classification Framework:

- HS Code Determination Process:
- 1. Product description analysis
- 2. Material composition identification
- 3. Function and use determination
- 4. Harmonized System classification
- 5. Duty rate calculation
- 6. Trade agreement benefits assessment

B. Quality Assurance Protocols

Inspection Procedures

Quality assurance protocols, based on statistical quality control principles, provide systematic approaches to ensuring product conformity and reducing quality risks.

Three-Level Inspection Strategy:

Level 1 - Incoming Materials Inspection:

- Material specifications verification
- Dimensional checks
- Visual appearance assessment
- Certificate of analysis review
- Sample testing protocols

Level 2 - In-Process Quality Control:

- First article inspection (FAI)
- Statistical process control (SPC)
- Work-in-process audits
- Process capability studies
- Control chart monitoring

Level 3 - Final Product Inspection:

- Functional testing
- Safety compliance verification
- Packaging and labeling check
- Final quality audit
- Shipping documentation review

Sampling Plans and Acceptance Criteria

AQL (Acceptable Quality Level) Sampling Tables:

Lot Size Range	Sample Size	Acceptance Number	Rejection Number
2-8	2	0	1
9-15	3	0	1
16-25	5	0	1
26-50	8	0	1
51-90	13	1	2
91-150	20	1	2
151-280	32	2	3
281-500	50	3	4

Testing Protocol Template:

Test Category	Test Method	Acceptance Criteria	Frequency	Responsible Party
Dimensional	CMM/Calipers	±0.1mm tolerance	Per lot	Supplier QC
Functional	Performance test	100% pass rate	Per sample	Third party
Safety	Safety standard	Full compliance	Per model	Certified lab
Durability	Life cycle test	>10,000 cycles	Per design	Independent lab
Environmenta 	Temperature/ humidity	Specification limits	Per lot	Accredited lab

C. Legal and Contractual Framework

Terms and Conditions Templates

Contract theory emphasizes that well-structured agreements reduce transaction costs and minimize disputes through clear allocation of rights, responsibilities, and risks.

Standard Terms and Conditions Framework:

1. Product Specifications and Requirements:

Product specifications shall conform to:

- Technical drawings and specifications dated [DATE]
- Quality standards as defined in Appendix A
- Regulatory requirements applicable in destination markets
- Customer-specific requirements as detailed in Statement of Work

2. Pricing and Payment Terms:

Payment Terms: Net [30/45/60] days from invoice date Price Validity: [6/12] months from agreement date Currency: USD (unless otherwise specified) Price Adjustment: Annual review based on material cost index Volume Discounts: As per pricing schedule in Appendix B

3. Delivery and Performance:

```
Delivery Terms:
[FOB/CIF/DDP] as per Incoterms 2020
Lead Time: [X] weeks from confirmed
purchase order On-Time Delivery Target: >95% within
agreed delivery window
Expedite Charges: Buyer responsibility for schedule
changes <[X] weeks
```

Intellectual Property Protection

IP Protection Checklist:

- **Patent Protection:** Patent landscape analysis, freedom to operate assessment, patent application filing strategy, patent licensing agreements, patent infringement monitoring
- **Trade Secret Protection:** Non-disclosure agreements (NDAs), confidentiality protocols, access control measures, employee training on confidentiality, third-party security assessments
- **Trademark Protection:** Trademark registration in key markets, brand protection strategy, counterfeiting monitoring, enforcement procedures, domain name protection

IP Licensing Agreement Template:

Licensing Terms	Details
Licensed Technology	[Specific patents/know-how]
Field of Use	[Manufacturing/geographic limitations]
Exclusivity	[Exclusive/Non-exclusive]
Royalty Rate	[% of net sales]
Minimum Royalty	[\$X annually]
Improvement Rights	[Shared/Exclusive to licensor]
Term	[X years]

D. Risk Management Guidelines

Supply Chain Risk Assessment Matrix

The COSO Enterprise Risk Management framework provides a structured approach to identifying, assessing, and mitigating supply chain risks.

Risk Assessment Matrix:

Risk Scoring Formula:

Risk Category	Specific Risk	Probability	Impact	Risk Score	Mitigation Strategy
Operational Risks					
Production capacity shortage	%	High/Med/Low			
Quality system failure	%	High/Med/Low			
Key personnel departure	%	High/Med/Low			
Financial Risks					
Supplier bankruptcy	%	High/Med/Low			
Currency fluctuation	%	High/Med/Low			
Payment default	%	High/Med/Low			
External Risks					
Natural disasters	%	High/Med/Low			
Political instability	%	High/Med/Low			

Risk Category	Specific Risk	Probability	Impact	Risk Score	Mitigation Strategy
Regulatory changes	%	High/Med/Low			
Strategic Risks					
Technology obsolescence	%	High/Med/Low			
Competitor actions	%	High/Med/Low			
Market demand changes	%	High/Med/Low			

```
Risk Score = Probability (%) × Impact Score (1-10) × Exposure ($) Risk Priority = Risk Score / Mitigation Cost
```

Contingency Planning

Business Continuity Plan Template:

1. Alternative Supplier Development:

- Primary supplier: [Company A]
- Secondary supplier: [Company B] 30% capacity
- Emergency supplier: [Company C] Limited capacity
- Oualification timeline: [X weeks]
- Cost premium: [X%] above primary

2. Inventory Management Strategy:

- Safety stock levels: [X weeks] supply
- Strategic inventory locations: [List locations]
- Emergency inventory: [X days] for critical components
- Inventory carrying cost: [X%] annually

3. Communication Protocols:

- Risk monitoring frequency: [Daily/Weekly]
- Escalation procedures: [Contact hierarchy]
- Customer communication: [Within X hours]
- Stakeholder updates: [Frequency and format]

Performance Monitoring Framework

Key Performance Indicators (KPIs):

KPI Category	Metric	Target	Measurement	Frequency
Quality				
Defect Rate	PPM	< 100	Incoming inspection	Weekly
First Pass Yield	%	>99%	Production data	Daily
Customer Complaints	Count	< 1/month	Customer feedback	Monthly
Delivery				
On-Time Delivery	%	>95%	Shipment tracking	Weekly
Lead Time	Days	<x days<="" td=""><td>Order to ship</td><td>Monthly</td></x>	Order to ship	Monthly
Fill Rate	%	>99%	Order fulfillment	Weekly
Cost				
Cost Reduction	%	X% annually	Price analysis	Quarterly
Total Cost	\$	Budget target TCO model		Monthly
Currency Impact	%	<2% variance	Exchange rates	Monthly

IV. PRODUCT DEVELOPMENT

A. Innovation Management Framework

New Product Development Process

The Stage-Gate methodology, developed through extensive research in innovation management, provides a disciplined approach to moving new product concepts from idea to market launch.

Stage-Gate Process Framework:

- **Stage 0: Discovery** Idea generation and capture, market opportunity identification, technology scouting, competitive intelligence gathering
- **Gate 1: Idea Screen** Strategic fit assessment, market attractiveness evaluation, technical feasibility review, resource requirement estimation
- **Stage 1: Scoping** Market research and analysis, technical assessment and feasibility, business case development, risk assessment and mitigation
- **Gate 2: Second Screen** Business case evaluation, technical risk assessment, resource allocation decision, project prioritization
- **Stage 2: Build Business Case** Detailed market analysis, technical development plan, financial projections and modeling, risk analysis and mitigation strategies
- **Gate 3: Go-to-Development** Business case approval, resource commitment, project team formation, development timeline approval
- **Stage 3: Development** Detailed design and engineering, prototype development and testing, manufacturing process development, regulatory compliance activities
- **Gate 4: Go-to-Testing** Technical review and approval, quality system validation, manufacturing readiness, market testing authorization
- Stage 4: Testing and Validation Market testing and validation, production trials and optimization, regulatory approvals, launch preparation
- **Gate 5: Go-to-Launch** Final business case review, launch readiness assessment, Go/no-go decision, resource allocation for launch

• **Stage 5: Launch** - Market introduction, production ramp-up, performance monitoring, continuous improvement

Product Development Scorecard:

Development Stage	Completion Criteria	Status	Gate Review Date
Concept Definition	Requirements specification complete	√/O/X	[Date]
Feasibility Study	Feasibility Study Technical risk assessment complete		[Date]
Design Development	Design freeze achieved	√/O/X	[Date]
Prototype Testing	Performance validation complete	√/O/X	[Date]
Pilot Production	Process capability confirmed	√/O/X	[Date]
Market Launch	Commercial production ready	√/O/X	[Date]

Cross-Functional Team Structure

Role	Responsibilities	Time Allocation	Key Deliverables
Project Manager	Overall project coordination	100%	Project schedule, status reports
R&D Engineer	Technical development	80%	Design specifications, test results
Quality Engineer	Quality system development	60%	Quality plan, validation protocols
Manufacturing Engineer	Process development	70%	Manufacturing plan, cost analysis
Marketing Manager	Market analysis and positioning	40%	Market research, launch strategy
Procurement Specialist	Supplier selection and management	50%	Supplier evaluation, cost negotiation

Critical Path Analysis Template:

Activity	Duration	Predecessors	Successors	Float Time	Critical Path
Market Research	4 weeks	-	Concept Design	0 weeks	Yes
Concept Design	6 weeks	Market Research	Feasibility Study	0 weeks	Yes
Feasibility Study	3 weeks	Concept Design	Detail Design	1 week	No
Detail Design	8 weeks	Concept Design	Prototyping	0 weeks	Yes
Prototyping	4 weeks	Detail Design	Testing	0 weeks	Yes
Testing & Validation	6 weeks	Prototyping	Pilot Production	0 weeks	Yes
Pilot Production	3 weeks	Testing	Launch	0 weeks	Yes

Milestone Review Template:

Milestone	Target Date	Actual Date	Status	lssues/Risks	Action Items
Concept Freeze	[Date]	[Date]	On Track/Delayed		
Design Review	[Date]	[Date]	On Track/Delayed		
Prototype Complete	[Date]	[Date]	On Track/Delayed		
Testing Complete	[Date]	[Date]	On Track/Delayed		
Production Ready	[Date]	[Date]	On Track/Delayed		
Market Launch	[Date]	[Date]	On Track/Delayed		

B. Design for Manufacturing (DFM)

Design Optimization Guidelines

Design for Manufacturing principles emphasize the importance of considering manufacturing constraints and opportunities during the design phase to optimize cost, quality, and production efficiency.

DFM Checklist:

- Material Selection: Standard materials specified where possible, material availability and cost optimization, supplier capability assessment, environmental and regulatory compliance, material property optimization for application
- **Design Simplification:** Part count minimization, standard fasteners and components, elimination of unnecessary features, modular design approach, common parts across product family
- **Manufacturing Process Optimization:** Process capability alignment, tight tolerance minimization, assembly sequence optimization, tooling and fixturing considerations, automation potential assessment

Cost Optimization Matrix:

Design Element	Current Design	DFM Improvement	Cost Impact	Implementation Effort
Part Count	 parts	parts	\$ savings	High/Med/Low
Material Usage	 kg/unit	kg/unit	\$ savings	High/Med/Low
Machining Time	—— min/part	min/part	\$ savings	High/Med/Low
Assembly Time	—— min/unit	min/unit	\$ savings	High/Med/Low

Design Element	Current Design	DFM Improvement	Cost Impact	Implementation Effort
Tooling Cost	\$	\$	\$ savings	High/Med/Low
Yield Rate	%	%	\$ savings	High/Med/Low

Manufacturing Scalability Assessment

Production Volume Analysis:

Volume Level	Units/Year	Manufacturing Method	Unit Cost	Investment Required
Prototype	1-10	Manual assembly	\$	\$
Low Volume	100-1,000	Semi-automated	\$	\$
Medium Volume	1,000- 10,000	Automated assembly	\$	\$
High Volume	10,000+	Fully automated	\$	\$

Scalability Readiness Checklist:

- Process capability studies completed
- Automation roadmap developed
- Supplier capacity confirmed
- Quality system scalability verified
- Cost model validated across volumes
- Supply chain capacity assessment
- Workforce planning completed

C. Prototype Development & Testing

Validation Processes

The iterative prototype development process ensures that product concepts are validated through multiple cycles of build-test-learn iterations.

Prototype Development Stages:

- Stage 1: Concept Prototypes Purpose: Validate basic functionality and user interaction; Materials: 3D printing, breadboards, mockups; Testing focus: Functional verification, ergonomics; Success criteria: Core functions operational
- Stage 2: Alpha Prototypes Purpose: Integrate all subsystems and test performance; Materials: Production-intent materials and processes; Testing focus: Performance, durability, safety; Success criteria: Specification compliance verified
- **Stage 3: Beta Prototypes** Purpose: Validate manufacturing processes and field performance; Materials: Production tooling and processes; Testing focus: Manufacturing validation, user acceptance; Success criteria: Production readiness confirmed

Prototype Testing Matrix:

Test Category	Alpha Phase	Beta Phase	Production Phase	Pass Criteria
Functional Tests				
Basic functionality	Required	Required	Required	100% pass
Performance specs	Required	Required	Required	Within tolerance
User interface	Required	Required	Required	Usability score >4.0
Reliability Tests				
MTBF testing	Limited	Full	Statistical	>X hours
Durability testing	Accelerated	Real- time	Field trial	>X cycles
Environmental	Chamber	Chamber	Field	Per specification

Test Category	Alpha Phase	Beta Phase	Production Phase	Pass Criteria
Safety Tests				
Electrical safety	Required	Required	Certified	Full compliance
Mechanical safety	Required	Required	Certified	Full compliance
Chemical safety	As needed	Required	Certified	Full compliance

User Feedback Integration

Feedback Collection Framework:

Feedback	Collection	Sample	Analysis	Action
Source	Method	Size	Method	Threshold
Internal	Structured review	All	Qualitative	Consensus
teams		stakeholders	analysis	required
Key	Beta testing	5-10	Mixed	>70%
customers		customers	methods	positive

Feedback	Collection	Sample	Analysis	Action
Source	Method	Size	Method	Threshold
Focus	Facilitated	20-30	Statistical	Significance
groups	sessions	participants	analysis	p<0.05
Market	Surveys/interviews	100+	Statistical	>80%
research		respondents	analysis	acceptance

Design Change Management Process:

```
Change Request → Impact Assessment → Cost-Benefit
Analysis → Approval → Implementation → Validation Change
Impact Scoring: - Technical complexity: 1-5 scale - Cost
impact: $ value - Schedule impact: weeks delay - Risk
level: High/Medium/Low
```

D. Intellectual Property Management

IP Protection Strategy

Intellectual property management treats IP as a strategic asset that provides sustainable competitive advantage through legal protection of innovations.

IP Portfolio Management Framework:

Patent Type	Application	Filing	Cost	Expected
	Areas	Strategy	Investment	ROI
Utility Patents	Core technology, processes	Global filing	\$	%

Patent Type	Application Areas	Filing Strategy	Cost Investment	Expected ROI
Design Patents	Product appearance	Key markets	\$	%
Continuation Patents	Improvements	Strategic timing	\$	%
Defensive Patents	Blocking competitors	Selective filing	\$	%

IP Development Timeline:

IP Activity	Timeline	Responsible Party	Deliverable
Prior art search	Week 1-2	IP counsel	Search report
Invention disclosure	Week 3	R&D team	Disclosure document
Patentability assessment	Week 4-5	IP counsel	Assessment report

IP Activity	Timeline	Responsible Party	Deliverable
Patent drafting	Week 6- 10	Patent attorney	Patent application
Filing decision	Week 11	IP committee	Go/no-go decision
Patent filing	Week 12	Patent attorney	Filed application

Trade Secret Protection

Trade Secret Management Program:

- **Identification and Classification:** Trade secret inventory completed, classification system established, value assessment conducted, protection level assignment, regular review process implemented
- **Access Control Measures:** Need-to-know basis implementation, physical security measures, digital access controls, visitor management protocols, document handling procedures
- **Employee Management:** Confidentiality agreements signed, training programs delivered, exit interview procedures, post-employment restrictions, ongoing awareness programs

Trade Secret Protection Checklist:

Protection Measure	Implementation Status	Effectiveness Rating	Review Date
Physical security	Implemented/Partial/Not implemented	High/Medium/Low	[Date]
Digital security	Implemented/Partial/Not implemented	High/Medium/Low	[Date]
Employee training	Implemented/Partial/Not implemented	High/Medium/Low	[Date]
Vendor management	Implemented/Partial/Not implemented	High/Medium/Low	[Date]
Legal agreements	Implemented/Partial/Not implemented	High/Medium/Low	[Date]

IP Enforcement Mechanisms

IP Enforcement Strategy:

- Monitoring and Detection: Patent landscape monitoring, trademark watch services, market surveillance programs, customer feedback analysis, competitor product analysis
- **Enforcement Actions:** Cease and desist letter (for minor/accidental infringement), licensing negotiation (for moderate/intentional infringement), legal action (for major/willful infringement), criminal prosecution (for counterfeiting)

• **Licensing Program:** Upfront fees per license, running royalties (% of net sales), minimum annual royalties, territory restrictions, field of use limitations

CONCLUSION

Toolkit Overview

This comprehensive China Sourcing Toolkit provides a systematic framework for strategic supplier evaluation, cost management, compliance assurance, and product development. The tools and templates are designed to be practical yet thorough, enabling procurement professionals to make informed decisions while minimizing risks and maximizing value.

The framework integrates proven management theories with practical applications, ensuring that sourcing decisions are both strategically sound and operationally effective. Regular updates and continuous improvement of these tools will enhance their effectiveness and maintain their relevance in the dynamic global sourcing environment.

CHINA SOURCING TOOLKIT

Your Complete Guide for Strategic Procurement and Supplier Management

THANK YOU!

We appreciate your interest in our China Sourcing Toolkit. Please feel free to contact us for any questions or further assistance.

Shenzhen Office

Fazhan Co. 608, Tianyun Rd, Xitou, Songgang, Bao'an, Shenzhen, China Dongguan Office

B813, No.1 Yanfa Yi Rd., Songshanhu, Dongguan

Email

evan@feiliz.com

Mobile

+86 13530305326